If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-113t=74
We move all terms to the left:
16t^2-113t-(74)=0
a = 16; b = -113; c = -74;
Δ = b2-4ac
Δ = -1132-4·16·(-74)
Δ = 17505
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17505}=\sqrt{9*1945}=\sqrt{9}*\sqrt{1945}=3\sqrt{1945}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-113)-3\sqrt{1945}}{2*16}=\frac{113-3\sqrt{1945}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-113)+3\sqrt{1945}}{2*16}=\frac{113+3\sqrt{1945}}{32} $
| 2(3x-2)+4(x+3)=3(4-2x) | | 2(v+5)-4v=-8 | | 1x+4=16 | | -5w+2(w-2)=-19 | | 2(-x-6)=4(3x+5) | | 3(x-6)-2x=4x-5 | | 4(2x-9)=6x+4 | | 5)9x+1=2x+15 | | 4(3x-9=6x+4 | | 10x+44=8X-23=180 | | -4-5x=-7 | | 24=-6f-4f | | 9y+19=64 | | 9y+19=74 | | 55=1/10x | | 6x+7=19x-28=180 | | 5x^2+20+40=0 | | 192=-112+8x | | 39-4x=-25 | | -3(v+9)=-6 | | 2x-(x+1)=4(2x-3) | | 4(x+12=46 | | 9x=-71 | | 14(x-7)=4x+2 | | 6g=3g | | 5^{x}=62 | | x/1=-27 | | (x+1)/(x^2+3)=0 | | 14(8f–12)=4f | | -7=7x-6x | | -8x-14=-3x+16 | | 3f-8=13 |